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Abstract 
This paper presents an introduction to digital hardware 

design using Field Programmable Gate Arrays (FPGAs). 

After a historical introduction and a quick overview of 

digital design, the internal structure of a generic FPGA is 

discussed. Then we describe the design flow, i.e. the steps 

needed to go from design idea to actual working 

hardware. Digital signal processing is an important area 

where FPGAs have found many applications in recent 

years. Therefore a complete chapter is devoted to this 

subject. The paper finishes with a discussion of important 

peripheral concepts which are essential for success in any 

project involving FPGAs. 

HISTORICAL INTRODUCTION 

Digital electronics is concerned with circuits which 

represent information using a finite set of output states 

[1]. Most of the applications use in fact just two states, 

which are often labeled ‘0’ and ‘1’. Behind this choice is 

the fact that the whole Boolean formalism becomes then 

available for the solution of logic problems, and also that 

arithmetic using binary representations of numbers is a 

very mature field.  

Different mappings between the two states and the 

corresponding output voltages or currents define different 

logic families. For example, the Transistor-Transistor 

Logic (TTL) family defines an output as logic ‘1’ if its 

voltage is above a certain threshold (typically 2.4 V). For 

the same family, if we set the input threshold for logic ‘1’ 

as 2 V, we will have a margin of 0.4 V which will allow 

us to interconnect TTL chips inside a design without the 

risk of misinterpretation of logic states. This complete 

preservation of information even in the presence of 

moderate amounts of noise is what has driven a steady 

shift of paradigm from analogue to digital in many 

applications. Here we see as well another reason for the 

choice of binary logic: from a purely electrical point of 

view, having only two different values for the voltages or 

currents used to represent states is the safest choice in 

terms of design margins. 

Historically, TTL chips from the 74 series fuelled an 

initial wave of digital system designs in the 1970s. From 

this seed, we will focus on the separate branches that 

evolved to satisfy the demand for programmability of 

different logic functions. By programmability, we mean 

the ability of a designer to affect the logic behavior of a 

chip after it has been produced in the factory. 

A first improvement in the direction of 

programmability came with the introduction of Gate 

Arrays, which were nothing else than a chip filled with 

NAND gates that the designer could interconnect  as 

needed to generate any logic function he desired. This 

interconnection had to happen at the chip design stage, 

i.e. before production, but it was already a convenient 

improvement over designing everything from scratch. We 

have to wait until the introduction of Programmable 

Logic Arrays (PLAs) in the 1980s to have a really 

programmable solution. These were two-level AND-OR 

structures with user-programmable connections. 

Programmable Array Logic (PAL) devices were an 

improvement in performance and cost over the PLA 

structure. Today, these devices are collectively called 

Programmable Logic Devices (PLDs). 

The next stage in sophistication resulted in Complex 

PLDs (CPLDs), which were nothing else than a collection 

of multiple PLDs with programmable interconnections. 

FPGAs, in turn, contain a much larger number of simpler 

blocks with the attendant increase in interconnect logic, 

which in fact dominates the entire chip. 

BASICS OF DIGITAL DESIGN 

A typical logic design inside an FPGA is made of 

combinatorial logic blocks sandwiched in between arrays 

of flip-flops, as depicted in Fig. 1. A combinatorial block 

is any digital sub-circuit in which the current state of the 

outputs only depends, within the electrical propagation 

time, on the current state of the inputs. To this group 

belong all the well known basic logic functions such as 

the two-input AND, OR and any combination of them. It 

should be noted, that logic functions of arbitrary 

complexity can be derived from these basic blocks. 

Multiplexers, encoders and decoders are all examples of 

combinatorial blocks. The input in Fig. 1 might be made 

of many bits. The circuit is also supplied with a clock, 

which is a simple square wave oscillating at a certain 

fixed frequency. The two flip-flops in the circuit, which 

might be flip-flop blocks in the case of a multi-bit input, 

are fed with the same clock and propagate the signals 

from their D inputs to their Q outputs every time there is a 

rising edge in the clock signal. Apart from that very 

specific instant in time, D is disconnected from Q. 

 

 
Fig. 1: A typical digital design 

 

The structure of the circuit is thus very simple, and its 

application as a template covers the vast majority of 

digital design requirements in standard applications, such 



as the control of particle accelerators. The designer only 

needs to ensure that the worst-case propagation delay 

between any of the inputs to the combinatorial logic block 

and any of its outputs is less than one clock period. If that 

condition is satisfied, the inputs to the second stage of 

flip-flops will be stable by the time the next clock edge 

reaches them. As we shall see later, the process of 

ensuring this timing closure is nowadays automated, so 

the designer need only be concerned with the 

specification of the logic behavior of the circuit. 

The main merit of this design strategy, called 

synchronous design, is that the analysis of the possible 

timing failures and race conditions is greatly simplified. 

One might design otherwise, feeding for example the 

clock input of a flip-flop from the output of a 

combinatorial clock, in what is called a ‘gated clock’ 

circuit, and that design might give good results during 

simulation. But then, slight changes in the different delays 

of the signals might result in circuit malfunction. Slight 

changes of delays in the synchronous design paradigm 

can be easily accommodated by taking some safety 

margin in the maximum allowed time for any 

combinatorial signal path. This simple recipe contrasts 

with the ‘many-body problem’ of examining effects of 

delay changes in asynchronous designs. 

FPGA STRUCTURE 

A typical modern FPGA (see Fig. 2) provides the 

designer with programmable logic blocks that contain the 

pool of combinatorial blocks and flip-flops to be used in 

the design. 

  
 

Fig. 2: Internal structure of a generic FPGA (courtesy 

Xilinx, Inc.) 

 

In addition, vendors acknowledge the fact that logic is 

often used in conjunction with memory, and typically 

include variable amounts of static Random Access 

Memory (RAM) inside their chips. Clock conditioning 

has also become commonplace, and support in the form 

of Delay Locked Loops (DLLs) and Phase Locked Loops 

(PLLs) is also provided inside the same silicon chip. 

Finally, an FPGA chip does not lead a solitary life 

isolated from the rest of the world. It needs to be easily 

interfaced to other chips or external signals. In order to 

make this interfacing easier, FPGA vendors have invested 

a great deal of effort in enhancing the flexibility of the 

input/output blocks behind the chip pads. Each pad can 

serve as an input, an output, or both. The list of electrical 

standards supported is extensive, and novel techniques for 

maximizing bandwidth, such as clocking data in using 

both edges of the clock, are widely supported. 

 

All the components shown in Fig. 2, however, typically 

account for less than 20% of the silicon inside an FPGA 

chip. What is not shown is the large amounts of 

programmable interconnect and the auxiliary circuits 

which ‘program’ the generic blocks to become a well-

defined piece of logic. This silicon inefficiency is the 

price to pay for programmability, and is also the reason 

why FPGAs have traditionally been more successful in 

high-end, low-volume applications in the past, with 

Application Specific Integrated Circuits (ASICs) taking a 

leading role for high-volume applications. With Moore’s 

law, however, the line between high-end and low-end 

applications is continuously shifting, and FPGAs are 

more and more used in domains which used to be 

dominated by ASICs and Digital Signal Processors 

(DSPs). 

To overcome the silicon inefficiency problem, FPGA 

vendors often include hardwired Intellectual Property (IP) 

cores inside the chips for functions identified as recurrent 

in many designs. These non-programmable blocks include 

general purpose processors, high speed serial interfaces, 

arithmetic blocks and Ethernet Medium Access Control 

(MAC) units. 

DESIGN FLOWS 

The designer facing a design problem must go through 

a series of steps between initial ideas and final hardware. 

This series of steps is commonly referred to as the ‘design 

flow’. First, after all the requirements have been spelled 

out, a proper digital design phase must be carried out. It 

should be stressed that the tools supplied by the different 

FPGA vendors to target their chips do not help the 

designer in this phase. They only enter the scene once the 

designer is ready to translate a given design into working 

hardware. 

The most common flow nowadays used in the design of 

FPGAs involves the following subsequent phases: 

- Design entry. This step consists in transforming 

the design ideas into some form of computerized 

representation. This is most commonly accomplished 

using Hardware Description Languages (HDLs). The two 

most popular HDLs are Verilog and the Very High Speed 

Integrated Circuit HDL (VHDL) [2]. It should be noted 

that an HDL, as its name implies, is only a tool to 

describe a design that pre-existed in the mind, notes and 

sketches of a designer. It is not a tool to design electronic 

circuits. Another point to note is that HDLs differ from 

conventional software programming languages in the 

sense that they don’t support the concept of sequential 

execution of statements in the code. This is easy to 

understand if one considers the alternative schematic 

representation of an HDL file: what one sees in the upper 



part of the schematic cannot be said to happen before or 

after what one sees in the lower part. 

- Synthesis. The synthesis tool receives HDL and 

a choice of FPGA vendor and model. From these two 

pieces of information, it generates a netlist which uses the 

primitives proposed by the vendor in order to satisfy the 

logic behavior specified in the HDL files. Most synthesis 

tools go through additional steps such as logic 

optimization, register load balancing and other techniques 

to enhance timing performance, so the resulting netlist 

can be regarded as a very efficient implementation of the 

HDL design. 

- Place & route. The placer takes the synthesized 

netlist and chooses a place for each of the primitives 

inside the chip. The router’s task is then to interconnect 

all these primitives together satisfying the timing 

constraints. The most obvious constraint for a design is 

the frequency of the system clock, but there are more 

involved constraints one can impose on a design using the 

software packages supported by the vendors. 

- Bit stream generation. FPGAs are typically 

configured at power-up time from some sort of external 

permanent storage device, typically a Flash memory. 

Once the place and route process is finished, the resulting 

choices for the configuration of each programmable 

element in the FPGA chip, be it logic or interconnect, 

must be stored in a file to program the Flash. 

Of these four phases, only the first one is human labor 

intensive. Somebody has to type in the HDL code, which 

can be tedious and error-prone for complicated designs 

involving, for example, lots of digital signal processing. 

This is the reason for the appearance, in recent years, of 

alternative flows which include a preliminary phase in 

which the user can draw blocks at a higher level of 

abstraction and rely on the software tool for the 

generation of the HDL. Some of these tools also include 

the capability of simulating blocks which will become 

HDL with other blocks which provide stimuli and 

processing to make the simulation output easier to 

interpret. The concept of hardware co-simulation is also 

becoming widely used. In co-simulation, stimuli are sent 

to a running FPGA hosting the design to be tested and the 

outputs of the design are sent back to a computer for 

display (typically through a Joint Test Action Group 

(JTAG), or Ethernet connection). The advantage of co-

simulation is that one is testing the real system, therefore 

suppressing all possible misinterpretations present in a 

pure simulator. In other cases, co-simulation may be the 

only way to simulate a complex design in a reasonable 

amount of time. 

DIGITAL SIGNAL PROCESSING USING 

FPGAS 

Clearly the main advantage of FPGAs over 

conventional DSPs to perform digital signal processing is 

their capability to exploit parallelism, i.e. replication of 

hardware functions that operate concurrently in different 

parts of the chip. Figure 3 shows how a Finite Impulse 

Response (FIR) filter could be implemented in both 

platforms. While the DSP needs 256 clock ticks to 

calculate an output sample, the FPGA generates a new 

sample for every clock cycle. Even if DSP chips can be 

clocked faster than FPGAs, the difference is in no case 

larger than a factor of 10. If one adds that many such 

filters can exist concurrently and interact inside the same 

FPGA, it is easy to see that DSPs are no match for FPGAs 

in high performance signal processing applications [3]. 

 

 
Fig. 3: FIR filter comparison between DSP and FPGA 

 

Another advantage of FPGAs is the flexibility for 

trading off between area and speed until very late in the 

design cycle. Figure 4 shows three different 

implementations of a sum of products, from a full 

expansion using more silicon to a minimalist 

implementation which takes more clock cycles to 

generate a result.  

 

 
Fig. 4: Illustrating the speed/area trade-off in FPGAs 

 

In this section, we give a basic introduction to fixed-

point arithmetic and then touch briefly upon two 

interesting techniques for processing fixed-point signals: 

distributed arithmetic and the COordinate Rotation 

DIgital Computer (CORDIC) algorithm. The interested 

reader will find more details in the references at the end 

of this document. 

Fixed point arithmetic 

In FPGA design, one typically uses a two’s 

complement fixed-point representation of numbers. 

Floating point design is perfectly feasible, but the high-

performance applications typically targeted by FPGAs 

can very often be served adequately by using enough bits 

in a fixed-point representation. This is another advantage 

of FPGAs: the possibility to tailor the bus widths in 

different parts of the design to satisfy the final precision 

requirements. Figure 5 shows an example of fixed-point 



two’s complement representation, where we have taken 3 

of the bits for the integer part and 5 for the fractional part. 

In reality, as we shall see, an adder or any other arithmetic 

circuit does not know about our decision on how many 

bits to interpret as fractional. This is purely an 

interpretational issue, so for all practical purposes, one 

can think of fixed-point arithmetic as integer arithmetic. 

 

 
Fig. 5: fixed-point two’s complement representation of 

signed numbers using 3 integer bits and 5 fractional bits 

 

As an introductory example, let’s see how one can 

make a circuit that performs simple addition or 

subtraction of 4-bit numbers using logic gates. This will 

be a combinatorial circuit with 9 inputs (4 per input and 1 

for controlling if we add or subtract) and 5 outputs (the 

final result). Notice that we need to have one extra bit in 

the output because the addition/subtraction of two 4-bit 

numbers can result in a 5-bit number.  

We start with the full adder circuit of Fig. 6. It is easy 

to see that this circuit made of AND, OR and XOR gates 

takes two bits and a carry (maybe from a preceding stage) 

and generates a proper sum and carry out. 

 

 
Fig. 6: a full adder circuit 

 

Out of many of these Full Adder (FA) cells, one can 

build the circuit of Fig. 7, which takes two 4-bit signed 

numbers and adds them together if the Control signal is 

‘0’.  

 
Fig. 7: 4-bit full add/subtract 

 

Otherwise, a subtraction is performed. Although these 

days one would generate this circuit with a simple HDL 

statement, it is enlightening to understand what the 

underlying hardware looks like. More complicated blocks 

to multiply, divide, take a square root, etc can be 

synthesized using these basic blocks and the reader is 

referred to the specialized literature for details [3]. 

 

One question that arises immediately is what to do with 

this arithmetic bus that gets wider and wider as we 

cascade more and more operations one after the other. At 

some point, the bus width will become inconveniently 

large. We will be wasting bits with unnecessary 

information, and our timing constraints could be 

compromised as the combinatorial paths traverse more 

layers of logic before hitting the next flip-flop. One 

example could be a feedback system that generates an 

analog signal towards a Radio Frequency (RF) cavity 

using a 16-bit Digital to Analog Converter (DAC) fed by 

an FPGA. There would be no point in keeping an internal 

representation of say 50 bits and then collapse it all at the 

very end to feed the DAC with only 16 bits. The solution 

to this problem is to control the width after each operation 

by judiciously choosing a suitable number of bits to 

represent the intermediate results. Figure 8 shows two 

ways of doing this: truncation and rounding. In 

truncation, some of the fractional bits are taken out before 

feeding the result to the next stage. In rounding, a ‘1’ is 

added to the most significant bit (of the ones to be taken 

out) before truncation. 

 

 
Fig. 8: truncation vs. rounding in fixed-point 

representation 

 

Notice that in two’s complement, truncation is a biased 

operation. The output of truncation will always be a 

smaller number than the input. If an unbiased scheme is 

needed, then rounding should be used at the expense of 

the extra addition involved. The loss in precision incurred 

by taking some of the bits out can be studied statistically 

by modeling rounding or truncation as a source of white 

noise with an amplitude dependent on the number of bits 

eliminated [4]. 

Distributed Arithmetic 

Digital signal processing is all about sums of products. 

For example, if a generic filter is fed with an input 

sequence x[n], we can write its output as 

     (1) 

where c[n] are the filter coefficients. If these 

coefficients are constant, and assuming the input signal to 

be B bits wide, we can rearrange the terms in a sequence 



that will end up suggesting an alternative hardware 

implementation. We begin by re-writing (1) as 

   

             (2) 

where xb[n] is bit number b of x[n], i.e. either ‘0’ or ‘1’. 

After rearranging: 

  

  

             (3) 

and the term in parentheses can be implemented as a 

Look Up Table (LUT) with N inputs, as suggested in Fig. 

9. 

 

 
Fig. 9: Distributed Arithmetic implementation of a 

filter 

 

The filter implemented in this way has no need of 

hardware multipliers, and generates a result every B ticks, 

independent of the filter length N. By increasing the 

number of LUTs and replicating hardware, one can trade-

off latency versus area. The extreme case would be full 

parallelization: replicating B times to get one output 

sample per clock tick. 

The CORDIC algorithm 

The CORDIC is a circuit that iteratively rotates an 

input vector (x(1), y(1)) and generates an output vector 

(x(2), y(2)), where x and y are the Cartesian coordinates 

of the vectors. There are two modes of operation. In 

rotation mode, an angle accumulator is set to the desired 

rotation angle, and the CORDIC approximates that angle 

by performing elementary rotations of decreasing angles. 

The output is the input vector rotated by the specified 

angle. In vectoring mode, the CORDIC block rotates the 

input vector using the same table of decreasing angles 

until the resulting vector is aligned with the horizontal 

axis. In this mode, the result is the angle accumulated 

throughout the whole rotation process. The trick in the 

CORDIC algorithm is to constrain the set of angles to 

those whose tangent can be expressed as 2
-i
, i being the 

iteration index. Then the rotation operations for these 

angles do not need any specific multipliers, since a 

multiplication by 2
-i
 is just a right-shift by i places. This 

produces a very efficient hardware implementation in 

terms of area and speed. Each iteration generates roughly 

an extra bit of precision in the result. Among the several 

things one can calculate with a CORDIC, we can 

highlight the following: 

- Magnitude of a vector: it is found on the x of the 

output vector after operating the CORDIC in vectoring 

mode. 

- Sine and cosine of an angle: found by feeding an 

input vector with x=1, y=0 and setting the CORDIC to 

work in rotation mode with the specified angle. 

More uses of the CORDIC as well as a detailed 

description on its internal features and ways to accelerate 

it can be found in the references [5]. 

FPGAS IN REAL WORLD DESIGNS 

This section is devoted to design aspects which are 

encountered in real projects. The FPGA designer will find 

none of these problems while simulating behavioral HDL 

in a computer, but they are paramount for the success of 

any FPGA project. 

Performance boosting techniques 

We already discussed the benefits of synchronous 

design. The place & route tool will analyze the timing 

constraints and optimize the placement and routing in 

such a way as to meet these constraints. But what if it 

can’t? If the delays due to propagation through individual 

gates are already higher than the specified clock period, 

there is nothing the tool can do to meet the specification. 

Remember the tool’s degrees of freedom are just related 

to where to place blocks and how to interconnect them. 

The interconnect delay will never be less than 0, and it 

has to be added to gate propagation delays which are fully 

determined by the synthesized netlist. So if the gate 

propagation delays already exceed the specified clock 

period, it’s mission impossible for the place & route tool.  

Delays in modern designs can be as much as 90% due 

to routing and 10% due to logic. The routing bit is due to 

long routes and capacitive loading on the nets. Many 

synthesis tools automatically insert buffers in some nets 

to provide more current to drive the capacitive loads, 

therefore decreasing routing delay, as depicted in Fig. 10. 

 
Fig. 10: Automatic buffer insertion example 

 

The automatic replication of registers is another useful 

technique. This can be set as an option for those synthesis 

tools that support it, or it can be done by hand at the HDL 

level. Figure 11 illustrates the principle. The nets coming 

out of the flip-flop after the producer are going to four 

different destinations, potentially covering great lengths 

inside the chip. After the flip-flop is duplicated, each of 

the outputs only has to serve two destinations, so the 

timing constraints become easier. If there were 

combinatorial logic after the first flip-flop, it would also 

be replicated. The HDL specification is therefore fully 



respected. 

 
  

Fig. 11: Automatic replication of registers 

 

Another problem case concerns long combinatorial 

delays between flip-flop stages. As we said earlier, there 

is nothing that the place and route tool can do in this case. 

The solution must come from the synthesis tool or the 

designer. Retiming – also known as register balancing – is 

a technique that can be used in these cases. Figure 12 

shows how it works. Some of the combinatorial logic is 

passed to the next stage in the pipeline so that the 

maximum delay in each stage remains within the 

specifications. 

 

 
Fig. 12: Retiming 

 

If retiming is not possible, one can always try 

pipelining, provided the circuit is not sensitive to the 

latency in the extra number of clock cycles. The principle 

is explained in Fig. 13. It consists in breaking up the large 

combinatorial delay by inserting flip-flop stages after 

intermediate results. In this case, it is better to modify the 

original design rather than using the synthesis tool, since 

this could lead to an incoherency between HDL sources 

and final hardware. 

  
Fig. 13: Pipelining 

Finally, time-multiplexing in conjunction with 

hardware replication can also be a powerful tool to 

prevent timing pathologies. The principle, depicted in Fig. 

14, consists in splitting a data path in two, making each 

branch work at half the speed, and recombining the 

results at the end to regenerate a data flow at the design 

clock frequency. 

 

 
Fig. 14: Time multiplexing. 

 

As an example of how these tools can be used in 

practical cases, let’s examine a performance problem that 

arouse in the phase filter of a PLL used to track bunch 

frequency in CERN’s PS. Figure 15 shows the original 

filter design, a first order Infinite Impulse Response (IIR) 

filter implementing the transfer function y[n+1] = a y[n] + 

b x[n]. Signal y goes back to the output flip-flop through 

a multiplier and an adder, and these combinatorial delays 

are not compatible with the clock frequency. What can we 

do? 

 

 
Fig. 15: A simple IIR filter with a performance problem 

 

We can calculate y[n+2] = ay[n+1] + bx[n+1] = a2y[n] 

+ abx[n] + bx[n+1], and see what the resulting direct 

implementation would look like in Fig. 16.  

 

 
Fig. 16: Look-ahead scheme for IIR 

 



The circuit looks now much more favorable for timing 

improvements. The leftmost part looks like an FIR and 

can be pipelined as much as necessary. The second part 

now contains two flip-flops in series in the feedback path, 

which can be used for retiming. The technique we used is 

called ‘look-ahead’ and is very common for boosting the 

speed of digital circuits. 

Powering FPGAs 

FPGAs are typically powered from various supply rails. 

They need different voltages for the internal logic, the 

Input/Output (I/O) circuitry and some analog blocks like 

PLLs. Typical specifications include a +/-5% tolerance on 

the actual value of the voltage and monotonic ramping of 

the supplies during power-up. While it is not proven that 

ramping in a non-monotonic way would not work, FPGAs 

are not tested that way after manufacturing, so it is better 

to guarantee a monotonic ramp in order to avoid 

surprises. Devices also specify a minimum and a 

maximum ramping time for the voltage rails. Again, this 

is just how they are tested after production, and it is very 

wise to follow these guidelines. 

An important aspect to bear in mind concerns in-rush 

current at power-up due to the decoupling capacitors on 

the power supply rails. If C is the total capacitance, 

Ic=C* V/ T, so one might want to slow the ramping 

process down using a soft-start circuit in order to avoid 

the kick-in of protection mechanisms in regulators, which 

could in turn compromise monotonicity. 

Sequencing of supply voltages, i.e. making one 

available, then another one and so on, was a required 

practice in old technologies, and nowadays it is only 

recommended. It seems sensible that the I/O stages get 

power only after the internal logic is properly configured. 

A Supply Voltage Supervisor (SVS) chip can be used to 

control the process. Sequencing is also good to make sure 

that the main (typically 5V) rail feeding the regulators is 

well established (i.e. all capacitors charged) before they 

begin requesting current from it. Otherwise the 5V 

protection could trip and spikes could appear in the output 

of the regulators. 

The design of a proper bypassing network using 

capacitors is also a critical issue. A decoupling network 

should look like a short to ground for all the frequencies 

of power supply noise we want to reject. At high 

frequencies, like the ones of interest for this discussion, a 

capacitor chip can be modeled as an equivalent RLC 

circuit to take into account the various imperfections in its 

design. The parasitic inductance dominates at high 

frequencies, and is (almost) exclusively determined by the 

package type of the capacitor. The global frequency 

response presents a downward slope at low frequencies 

whose value depends on the capacitance, and an upward 

slope at high frequencies whose value depends on the 

parasitic inductance. The minimum of the curve thus 

depends on the capacitance value, and can be made 

arbitrarily wide by selecting a suitable set of capacitor 

values and placing them in parallel. High-value capacitors 

take care of low-frequency perturbations and can be 

placed relatively far away from the chip, while low values 

of capacitance (typically 10 nF), can be placed close to 

the chip – ideally below it – to take care of the fast 

perturbations. Reference [6] can be consulted for further 

details. 

Interfacing to the outside world 

Modern FPGAs have very versatile I/O blocks which 

make them easy to interface to other chips. In this section, 

we look in particular at issues which could appear when 

interfacing to Analog to Digital Converters (ADCs) or 

DACs. 

Whenever a design deals with high speed, high pin 

count parallel busses, as is often the case when interfacing 

FPGAs and ADCs/DACs, there is potential for noise 

problems. This is because the I/O drivers in the FPGA 

commute state all at the same time, creating large current 

surges in the Power Distribution System (PDS). The PDS 

should be well decoupled using the appropriate mix of 

capacitors as discussed above, but it cannot filter all the 

noise at all frequencies. In addition, sampling many bits at 

a high frequency can pose synchronization problems. If 

the clock edge is very close to the transition of any of the 

data bits, a problem known as metastability – to be 

explained later – can arise. It is therefore desirable to 

avoid simultaneous fast-switching of large busses if 

possible. One example where this is possible is in the 

sampling of high frequency, low bandwidth analog 

signals. According to sampling theory, there is no need to 

sample them in their main Nyquist zone, i.e. with at least 

twice their frequency. It is sufficient to sample them at 

least faster than twice their bandwidth – which can be 

significantly slower. This can be a solution for systems 

where latency is more or less a secondary concern, but it 

might not be possible for feedback systems. Another 

possibility for mitigating noise problems is to choose 

ADC and DAC chips which use differential signaling for 

the data bits and the clock. Currents in differential signals 

go in through one line and out of the other, without any 

net demand on the PDS. The use of differential signaling 

also creates negligible ground bounce. Ground bounce is 

caused by the fact that the impedance between the ground 

pins and the ground plane is not exactly zero. This can 

cause a perceived change in ground level, as seen by the 

digital chip, when it consumes significant current. This 

impedance has a resistive component but also a very 

important inductive component which will create voltage 

jumps as a function of dI/dt. Therefore, another way to 

improve the noise problem is to feed the digital outputs of 

the ADC with the lowest realistic supply voltage. Current 

generation ADCs can accept digital supplies in the range 

2.0-2.5V. In addition, current can be reduced by placing 

resistors in series with the ADC outputs. 

Another aspect to bear in mind when designing FPGA 

systems is the state of I/O drivers during power-up. Most 

FPGA chips provide a possibility, through external 

jumpers, of selecting whether the I/Os will be pulled-up 

or tri-stated during the power-up process. The tri-state 

option lets the designer control the power-up state of each 



pin through external pull-up or pull-down resistors. This 

is important if glitch-free operation is requested during 

startup. 

Clock domains and metastability 

Oftentimes a designer is faced with an input signal that 

is not synchronized with the system clock, i.e. its rising 

and falling edges do not maintain a constant delay with 

respect to the rising edge of the clock signal. Let’s 

imagine for example that we have a card where an FPGA 

is clocked by an on-board 100 MHz oscillator, and the 

card is fed with an external input representing the 

revolution frequency of a synchrotron. Let’s also assume 

that the revolution tick has to be fed to two different state 

machines inside the FPGA, and that the correct 

functioning of this design relies on both state machines 

detecting the revolution tick during the exact same period 

of the system clock, which is used as the clock for the 

state machines. 

A naïve design might split the revolution tick signal in 

two before feeding it to the state machines. The problem 

with this solution is that the revolution tick might 

eventually, after going through several layers of 

combinatorial logic, find itself at the D inputs of two 

different flip-flops inside the FPGA. But because the 

propagation delays of the revolution signal going through 

the two paths are different, one flip-flop might already 

clock it in as ‘1’ while the other still sees a ‘0’. 

A less naïve designer would then propose to feed the 

revolution tick to the D input of a flip-flop to begin with, 

and only then split in two. Indeed, the rate of failures 

would go down, but every now and then we would still 

see an incoherency between the two state machines. The 

culprit is an effect known as ‘metastability’ which afflicts 

flip-flops when a transition at their D input occurs too 

close in time to the rising edge in the clock input. In that 

case, their Q output hesitates until it finally settles to one 

of the two possible output values. The resolution time can 

be arbitrarily long as we push the two edges closer and 

closer in time. In our second design, from time to time the 

Q output of the synchronizing flip-flop will go 

metastable, with a resolution time such that – on the next 

system clock tick – one of the two subsequent flip-flops 

will already see a ‘1’ when the other one still sees a ‘0’. 

While it seems that this could become a never ending 

story, in fact, for all practical purposes, the circuit in Fig. 

17 will fix the problem. 

 

 
Fig. 17: Two flip-flop synchronizer 

 

Now, for typical system clock and asynchronous input 

frequencies, the chances that the second flip-flop goes 

metastable after the first one did on the previous cycle of 

the system clock are vanishingly small. One can easily 

design a circuit that will fail on average once every 

million years.  

The discussion above applies equally well to any design 

with more than one clock domain where data must be 

transferred from one domain to the other. By clock 

domain, we mean a part of the design which is clocked by 

a single common clock. Let’s imagine a designer needs to 

transfer a 16-bit number from one domain to another. 

Inserting a synchronizer for each bit would not help, since 

different flip-flops will see different set-up times of the 

data with respect to their clock. Indeed, these set-up times 

vary with time in a random way! The solution is to design 

the emitter block so that it asserts a data strobe when the 

data are ready, and holds the data stable for a suitable 

amount of time. The receiver circuit can then sample the 

strobe with a two flip-flop synchronizer and clock the 

data in once it senses a ‘1’ on the strobe line. A variation 

on this circuit includes a handshake whereby the receiver 

sends back an acknowledge line to the emitter, which in 

turn synchronizes it into its clock domain. Once the 

emitter senses a ‘1’ on the acknowledge line, it knows it 

can change the state of the data lines to prepare the next 

transfer. 

Sometimes the above scheme will not work because 

data comes in bursts at a speed which makes it impossible 

to perform the full handshake. In those cases, a First-In-

First-Out (FIFO) block is needed with each of its sides 

clocked by a different clock. 

Safe design 

There is at least one asynchronous signal in almost all 

designs: the external reset. In many cases, it is very 

important to handle this signal properly in order to 

guarantee coherency of different parts of a design. If we 

return to the example of the two different state machines 

within an FPGA, both running off the same system clock, 

and we require that they both ‘wake up’ during the same 

clock tick after the de-assertion of the reset signal, we 

find ourselves with a need to treat the reset signal as we 

treated the revolution tick above, i.e. we need to feed it to 

a synchronizer before using it in the design. 

The best reset strategy, not always possible, is to 

synchronize the reset to the system clock and then use it 

as a synchronous reset. This means that the reset line is 

treated as any other synchronous signal. It will enter some 

combinatorial block and affect its output, which will then 

be feed to the D input of a flip-flop. Chances are that the 

output of that combinatorial logic block will go to a 

predefined ‘reset’ state irrespective of other inputs if the 

reset line is active, but there is really nothing special 

about the reset line in this case from a topological point of 

view. 

Things change if, for some reason like saving 

resources, the designer wants to use the asynchronous 

reset input present in all flip-flops. There is still a certain 

guarantee of coherency if the reset fed to these inputs has 

been properly synchronized in advance, but this will 

greatly depend on the clock period and the delay to reach 



each asynchronous reset input. Typical place & route 

tools will not include these paths in their timing analysis 

because they don’t go from Q outputs to D inputs. It is 

really best if the asynchronous reset can be avoided 

altogether. 

Another important topic in safe design is that of 

complete state coverage in state machines. If a state 

machine has 5 different states, it will need at least 3 signal 

lines to represent its current state. But with 3 lines one 

can have 8 different states, 3 of which will be illegal. It is 

the designer’s responsibility to detect these states and take 

the state machine to a safe state if it goes to one of them. 

Now, how can a state machine go to an illegal state if no 

combination of inputs and states are supposed to take it 

there? The state vector is made of three lines, and each of 

these lines is – we can assume this without loss of 

generality – fed from the Q output of a flip-flop. High 

energy particles crossing the FPGA can induce what is 

called a Single Event Upset (SEU), flipping the state of 

one of the flip-flops to a new one, which might make the 

new three-bit combination illegal. With process 

geometries shrinking, one no longer needs a high energy 

accelerator to produce SEUs. Atmospheric particles will 

produce them at a rate high enough to make it a major 

concern for safety critical systems. 

Sometimes in high energy accelerator applications, an 

FPGA must live in a highly radioactive environment. This 

is a completely different game. Here are three techniques 

designers use frequently to make their designs more 

robust under such adverse conditions: 

- Antifuse technology. An antifuse is an element 

that creates a short circuit when overheated, i.e. exactly 

the opposite of what a fuse does. FPGAs based on 

antifuse technology are inalterable at least as far as the 

configuration memory is concerned. But we know that, 

among the RAM bits of a typical FPGA, the vast majority 

of them are configuration bits, so antifuse technology is a 

major improvement in terms of resistance to radiation. 

The negative side is the price of antifuse chips and also 

their lower densities. These devices are roughly one 

generation behind in terms of silicon processes. 

- Scrubbing. This is a protection scheme for the 

configuration memory of SRAM-based devices. As we 

said, most of the FPGA RAM bits that are susceptible of 

being affected by a SEU are in fact configuration bits. 

One can read the configuration stream back repeatedly to 

check if there has been any corruption, and then take 

corrective action if needed. The device that scans the 

configuration bits must itself be more robust than the 

FPGA being checked. It is typically antifuse-based. 

- Triple Mode Redundancy (TMR). This technique 

consists in replicating the same piece of logic three times 

and adding a set of voters to detect whether there was a 

SEU in one of the blocks. It is complementary to 

scrubbing because it takes care of design bits instead of 

configuration bits. Figure 18 shows the principle for the 

simple example of a counter. If a mismatch is found, the 

losing counter will be informed and correct its value 

accordingly. 

 

 
Fig. 18: TMR with state feedback 

 

It is assumed that the probabilities to have a double 

upset that will affect two counters at the same time are 

negligible, but this may not be a very realistic assumption 

with the ever-diminishing process geometries. A single 

high-energy particle can indeed affect more than one 

transistor around the impact area. This is why some 

vendors are developing software that automatically 

generates TMR logic and places the different parts of the 

ensemble in different, geographically distant, areas of the 

chip. Notice also that our FPGA contains now three 

counter outputs instead of one. With only one output, a 

SEU in one of the output transistors could defeat the 

whole TMR scheme. If the counter value is to be used 

outside the FPGA, decision logic must be implemented 

outside using a radiation-hard scheme in order to figure 

out the current value of the counter. 

For unmatched reliability, radiation-hard antifuse 

products are available. Every flip-flop in these devices is 

TMRed in silicon, with feedback TMR built in. Needless 

to say, these devices are extremely expensive and 

reserved for the most demanding applications in terms of 

radiation hardness. The extra logic needed for the TMR 

scheme and the state feedback are also a problem if 

excellent timing performance is required. 
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